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In a recent note [1], we have shown that the maximal error in the best
uniform approximation to (1 — x) by rational functions P(x)/Q(x), where
P(x), Q(x) are polynomials of degree <» having non-negative, non-
increasing coefficients, is (n+2)~'. Now it is natural to ask, given an
integer m>=1, how close can one approximate (1 —x") on [0,1] by
P(x)/Q(x), where the polynomial P(x) has non-negative, non-decreasing
coefficients and degree <m — 1, and the polynomial Q(x) has non-negative,
non-increasing coefficients and degree <n.

THEOREM 1. Let m, n be integers, 1 <m<n+1. Then
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THEOREM 2. Let P(x) be a real polynomial of degree <m—1 (m=1)
having non-negative, non-decreasing coefficients a;= P[0)/! and Q(x) a real
polynomial of degree <n (n=0) having non-negative, non-increasing coef-
ficients b;= Q'(0)/!, 0(0)>0. Then
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Proof of (1). For 0< x< 1 satisfying x"*'<m(m+n+1) ', we have
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For 0 < x <1 satisfying m(n+m+1)"'<x"*! we have
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Equality (1) now follows from (2).
Proof of (2). Set
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Hence ezm/(m+n+1).
REFERENCE

1. A. R. REDDY, A note on a result of Bernstein, J. Approx. Theory 47 (1986), 336-340.

Printed in Belgium



