Letter to the Editor

Best Approximation to $1-x^{m}$ by Special Rational Functions

A. R. Reddy
School of Mathematics \& CIS, University of Hyderabad, Hyderabad, India, and Department of Mathematics \& Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.
Communicated by Oved Shisha

Received August 9, 1985

In a recent note [1], we have shown that the maximal error in the best uniform approximation to $(1-x)$ by rational functions $P(x) / Q(x)$, where $P(x), Q(x)$ are polynomials of degree $\leqslant n$ having non-negative, nonincreasing coefficients, is $(n+2)^{-1}$. Now it is natural to ask, given an integer $m \geqslant 1$, how close can one approximate $\left(1-x^{m}\right)$ on $[0,1]$ by $P(x) / Q(x)$, where the polynomial $P(x)$ has non-negative, non-decreasing coefficients and degree $\leqslant m-1$, and the polynomial $Q(x)$ has non-negative, non-increasing coefficients and degree $\leqslant n$.

Theorem 1. Let m, n be integers, $1 \leqslant m \leqslant n+1$. Then

$$
\begin{equation*}
\left\|\left(1-x^{m}\right)-\frac{(n+1) \sum_{i=0}^{m-1} x^{i}}{(n+m+1) \sum_{i=0}^{n} x^{i}}\right\|_{L_{[0.1]}^{x}}=\frac{m}{m+n+1} . \tag{1}
\end{equation*}
$$

Theorem 2. Let $P(x)$ be a real polynomial of degree $\leqslant m-1(m \geqslant 1)$ having non-negative, non-decreasing coefficients $a_{j} \equiv P_{j}(0) / j!$ and $Q(x)$ a real polynomial of degree $\leqslant n(n \geqslant 0)$ having non-negative, non-increasing coefficients $b_{j} \equiv Q^{(j)}(0) / j!, Q(0)>0$. Then

$$
\begin{equation*}
\left\|\left(1-x^{m}\right)-\frac{P(x)}{Q(x)}\right\|_{L_{[0,1]}^{x}} \geqslant \frac{m}{m+n+1} . \tag{2}
\end{equation*}
$$

Proof of (1). For $0 \leqslant x \leqslant 1$ satisfying $x^{n+1} \leqslant m(m+n+1)^{-1}$, we have

$$
\begin{aligned}
0 & \leqslant\left(1-x^{m}\right)-\frac{(n+1) \sum_{j=0}^{m-1} x^{j}}{(n+m+1) \sum_{j=0}^{n} x^{j}}=\frac{\left(\sum_{j=0}^{m-1} x^{j}\right)\left(m /(m+n+1)-x^{n+1}\right)}{\sum_{j=0}^{n} x^{j}} \\
& \leqslant m /(m+n+1) .
\end{aligned}
$$

For $0 \leqslant x \leqslant 1$ satisfying $m(n+m+1)^{-1}<x^{n+1}$, we have

$$
\begin{aligned}
0 & <\frac{(n+1) \sum_{j=0}^{m-1} x^{j}}{(n+m+1) \sum_{j=0}^{n} x^{j}}-\left(1-x^{m}\right) \\
& \leqslant \frac{\left(\sum_{j=0}^{m-1} x^{j}\right)\left(x^{n+1}-m /(n+m+1)\right)}{\sum_{j=0}^{n} x^{j}} \leqslant \frac{m x^{n+1}-m^{2} x^{n+1} /(m+n+1)}{(n+1) x^{n+1}} \\
& =\frac{m}{m+n+1} .
\end{aligned}
$$

Equality (1) now follows from (2).
Proof of (2). Set

$$
\left|\left|1-x^{m}-\frac{P(x)}{Q(x)}\right|_{L_{[0,1]}^{x}}=\varepsilon .\right.
$$

Then

$$
\varepsilon \geqslant \frac{P(1)}{Q(1)} \geqslant \frac{m a_{0}}{(n+1) b_{0}}=\frac{m}{n+1}\left(\frac{a_{0}}{b_{0}}-1\right)+\frac{m}{n+1} \geqslant-\frac{m}{n+1} \varepsilon+\frac{m}{n+1} .
$$

Hence $\varepsilon \geqslant m /(m+n+1)$.

Reference

1. A. R. Reddy, A note on a result of Bernstein, J. Approx. Theory 47 (1986), 336-340.
